5 research outputs found

    An abstract machine for concurrent Haskell with futures

    Get PDF
    We show how Sestoft’s abstract machine for lazy evaluation of purely functional programs can be extended to evaluate expressions of the calculus CHF – a process calculus that models Concurrent Haskell extended by imperative and implicit futures. The abstract machine is modularly constructed by first adding monadic IO-actions to the machine and then in a second step we add concurrency. Our main result is that the abstract machine coincides with the original operational semantics of CHF, w.r.t. may- and should-convergence

    On conservativity of concurrent Haskell

    Get PDF
    The calculus CHF models Concurrent Haskell extended by concurrent, implicit futures. It is a process calculus with concurrent threads, monadic concurrent evaluation, and includes a pure functional lambda-calculus which comprises data constructors, case-expressions, letrec-expressions, and Haskell’s seq. Futures can be implemented in Concurrent Haskell using the primitive unsafeInterleaveIO, which is available in most implementations of Haskell. Our main result is conservativity of CHF, that is, all equivalences of pure functional expressions are also valid in CHF. This implies that compiler optimizations and transformations from pure Haskell remain valid in Concurrent Haskell even if it is extended by futures. We also show that this is no longer valid if Concurrent Haskell is extended by the arbitrary use of unsafeInterleaveIO
    corecore